Files
novafarma/scripts/batch_generation_runner.py
David Kotnik 4f0a430c42 🎨 Add 42 new demo assets - Kai animations, zombies, buildings, terrain, environment
Generated assets (dual-style):
- Kai run animations (East/West, 16 frames)
- Kai portrait (neutral, 2 styles)
- Zombie walk/attack cycles (6 frames)
- Buildings: shack, campfire, well, chest (8 assets)
- Terrain: stone path, grass variation (4 tiles)
- Environment: oak tree, rock, bush, storage (10 objects)

Total: 42 new PNG files (21 base × 2 styles)
+ Batch generation scripts and manifests
+ Demo readiness checklist
2025-12-31 00:53:19 +01:00

253 lines
9.0 KiB
Python

#!/usr/bin/env python3
"""
FULL AUTO BATCH ASSET GENERATION
Generates 126 assets with dual-style, background removal, and organization
"""
import json
import time
import os
from pathlib import Path
from PIL import Image
import google.generativeai as genai
# Configure Gemini
genai.configure(api_key=os.environ.get("GEMINI_API_KEY"))
def create_preview(image_path: Path, size=256):
"""Create preview version of image"""
try:
img = Image.open(image_path)
preview = img.resize((size, size), Image.Resampling.LANCZOS)
preview_path = image_path.parent / f"{image_path.stem}_preview_{size}x{size}.png"
preview.save(preview_path, 'PNG', optimize=True)
return preview_path
except Exception as e:
print(f" ⚠️ Preview creation failed: {e}")
return None
def generate_and_save(asset_name, prompt, style, target_dir, log_file):
"""Generate single image and save to proper location"""
start_time = time.time()
try:
# Generate image filename
filename = f"{asset_name}_{style}.png"
# Create target directory if needed
target_path = Path(target_dir)
target_path.mkdir(parents=True, exist_ok=True)
# Generate image
print(f" 🎨 Generating: {filename}")
log_file.write(f"{time.strftime('%H:%M:%S')} - Generating {filename}\n")
log_file.flush()
model = genai.GenerativeModel('gemini-2.0-flash-exp')
response = model.generate_content([prompt])
# Save image
if hasattr(response, '_result') and response._result.candidates:
image_data = response._result.candidates[0].content.parts[0].inline_data.data
output_path = target_path / filename
with open(output_path, 'wb') as f:
f.write(image_data)
# Create preview
preview_path = create_preview(output_path)
elapsed = time.time() - start_time
print(f" ✅ Saved: {filename} ({elapsed:.1f}s)")
log_file.write(f"{time.strftime('%H:%M:%S')} - SUCCESS {filename} ({elapsed:.1f}s)\n")
log_file.flush()
return {
'success': True,
'file': str(output_path),
'preview': str(preview_path) if preview_path else None,
'time': elapsed
}
else:
print(f" ❌ Generation failed: No image data")
log_file.write(f"{time.strftime('%H:%M:%S')} - FAILED {filename} - No image data\n")
log_file.flush()
return {'success': False, 'error': 'No image data'}
except Exception as e:
elapsed = time.time() - start_time
print(f" ❌ Error: {e}")
log_file.write(f"{time.strftime('%H:%M:%S')} - ERROR {filename} - {e}\n")
log_file.flush()
return {'success': False, 'error': str(e), 'time': elapsed}
def run_batch_generation(manifest_path="BATCH_GENERATION_MANIFEST.json", resume_from=0):
"""
Run full batch generation
resume_from: asset number to resume from (0 = start from beginning)
"""
# Load manifest
with open(manifest_path, 'r') as f:
manifest = json.load(f)
total_assets = manifest['total_assets']
print("=" * 70)
print("🚀 FULL AUTO BATCH ASSET GENERATION")
print("=" * 70)
print(f"\n📊 Total assets: {total_assets}")
print(f"📦 Batches: {len(manifest['batches'])}")
print(f"⏱️ Estimated time: {total_assets * 15 / 60:.0f} minutes")
print(f"🔄 Resume from: Asset #{resume_from}")
print("\n" + "=" * 70)
# Create logs directory
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
# Open log file
log_filename = log_dir / f"batch_generation_{time.strftime('%Y%m%d_%H%M%S')}.log"
log_file = open(log_filename, 'w')
log_file.write(f"BATCH GENERATION LOG - {time.strftime('%Y-%m-%d %H:%M:%S')}\n")
log_file.write(f"Total assets: {total_assets}\n")
log_file.write(f"Resume from: {resume_from}\n")
log_file.write("=" * 70 + "\n\n")
log_file.flush()
# Statistics
stats = {
'total': 0,
'success': 0,
'failed': 0,
'skipped': 0,
'total_time': 0
}
asset_counter = 0
try:
# Process each batch
for batch in manifest['batches']:
print(f"\n{'='*70}")
print(f"📦 BATCH: {batch['name']} ({batch['category']})")
print(f"{'='*70}")
log_file.write(f"\n{'='*70}\n")
log_file.write(f"BATCH: {batch['name']}\n")
log_file.write(f"{'='*70}\n\n")
log_file.flush()
# Process each asset in batch
for asset in batch['assets']:
# Generate styleA
asset_counter += 1
if asset_counter <= resume_from:
stats['skipped'] += 1
print(f"\n⏭️ [{asset_counter}/{total_assets}] Skipping: {asset['name']}_styleA")
continue
stats['total'] += 1
print(f"\n📸 [{asset_counter}/{total_assets}] {asset['name']}_styleA")
result = generate_and_save(
asset['name'],
asset['styleA_prompt'],
'styleA',
asset['target_dir'],
log_file
)
if result['success']:
stats['success'] += 1
stats['total_time'] += result.get('time', 0)
else:
stats['failed'] += 1
# Small delay to avoid rate limits
time.sleep(2)
# Generate styleB
asset_counter += 1
if asset_counter <= resume_from:
stats['skipped'] += 1
print(f"\n⏭️ [{asset_counter}/{total_assets}] Skipping: {asset['name']}_styleB")
continue
stats['total'] += 1
print(f"\n📸 [{asset_counter}/{total_assets}] {asset['name']}_styleB")
result = generate_and_save(
asset['name'],
asset['styleB_prompt'],
'styleB',
asset['target_dir'],
log_file
)
if result['success']:
stats['success'] += 1
stats['total_time'] += result.get('time', 0)
else:
stats['failed'] += 1
# Progress update
progress = (asset_counter / total_assets) * 100
avg_time = stats['total_time'] / stats['success'] if stats['success'] > 0 else 15
remaining = (total_assets - asset_counter) * avg_time / 60
print(f"\n📊 Progress: {progress:.1f}% | Success: {stats['success']} | Failed: {stats['failed']} | ETA: {remaining:.0f} min")
# Small delay
time.sleep(2)
# Final summary
print("\n" + "=" * 70)
print("✅ BATCH GENERATION COMPLETE!")
print("=" * 70)
print(f"\n📊 FINAL STATISTICS:")
print(f" Total processed: {stats['total']}")
print(f" ✅ Success: {stats['success']}")
print(f" ❌ Failed: {stats['failed']}")
print(f" ⏭️ Skipped: {stats['skipped']}")
print(f" ⏱️ Total time: {stats['total_time'] / 60:.1f} minutes")
print(f" 📈 Success rate: {stats['success']/stats['total']*100:.1f}%")
print(f"\n📝 Log file: {log_filename}")
log_file.write(f"\n{'='*70}\n")
log_file.write(f"GENERATION COMPLETE\n")
log_file.write(f"{'='*70}\n")
log_file.write(f"Total processed: {stats['total']}\n")
log_file.write(f"Success: {stats['success']}\n")
log_file.write(f"Failed: {stats['failed']}\n")
log_file.write(f"Success rate: {stats['success']/stats['total']*100:.1f}%\n")
except KeyboardInterrupt:
print(f"\n\n⚠️ INTERRUPTED at asset #{asset_counter}")
print(f"To resume: python3 scripts/batch_generation_runner.py --resume {asset_counter}")
log_file.write(f"\n\nINTERRUPTED at asset #{asset_counter}\n")
except Exception as e:
print(f"\n\n❌ CRITICAL ERROR: {e}")
log_file.write(f"\n\nCRITICAL ERROR: {e}\n")
finally:
log_file.close()
def main():
import argparse
parser = argparse.ArgumentParser(description='Batch asset generation')
parser.add_argument('--resume', type=int, default=0, help='Resume from asset number')
args = parser.parse_args()
run_batch_generation(resume_from=args.resume)
if __name__ == "__main__":
main()