Files
novafarma/src/systems/LakeSystem.js

319 lines
8.4 KiB
JavaScript

/**
* 🏞️ LAKE SYSTEM
* Generates and manages lakes across the world
* - Creates natural lake shapes
* - Biome-specific lake placement
* - Lake depth and shorelines
* - Connects to river system
*/
export default class LakeSystem {
constructor(worldWidth, worldHeight, biomeSystem) {
this.worldWidth = worldWidth;
this.worldHeight = worldHeight;
this.biomeSystem = biomeSystem;
// Lake map (stores depth: 0-1)
this.lakeMap = new Map();
// Lakes array
this.lakes = [];
// Lake settings
this.lakeCountPerBiome = {
grassland: 2,
forest: 3,
desert: 0, // No lakes in desert (unless oasis)
mountain: 2,
swamp: 4 // Most lakes in swamp
};
//小 pond settings
this.pondCount = 15; // Small ponds in grassland
console.log(`🏞️ Initializing Lake System (${worldWidth}x${worldHeight})`);
}
/**
* Generate all lakes
*/
generateLakes(riverSystem = null) {
console.log(`🏞️ Generating lakes...`);
// 1. Generate major lakes per biome
for (const [biomeName, count] of Object.entries(this.lakeCountPerBiome)) {
for (let i = 0; i < count; i++) {
const lake = this.generateLakeInBiome(biomeName);
if (lake) {
this.lakes.push(lake);
}
}
}
// 2. Generate small ponds
for (let i = 0; i < this.pondCount; i++) {
const pond = this.generatePond();
if (pond) {
this.lakes.push(pond);
}
}
// 3. Generate desert oases (rare)
this.generateOases(2);
console.log(`✅ Generated ${this.lakes.length} lakes with ${this.lakeMap.size} water tiles`);
}
/**
* Generate a lake in specific biome
*/
generateLakeInBiome(biomeName) {
// Find suitable location
const location = this.findLakeLocation(biomeName);
if (!location) return null;
// Lake size based on biome
const size = this.getLakeSizeForBiome(biomeName);
// Create lake
const lake = {
x: location.x,
y: location.y,
biome: biomeName,
size: size,
type: 'lake',
tiles: []
};
// Generate organic lake shape
this.generateLakeShape(lake);
return lake;
}
/**
* Find suitable location for lake
*/
findLakeLocation(biomeName) {
const maxAttempts = 50;
for (let attempt = 0; attempt < maxAttempts; attempt++) {
const x = Math.floor(Math.random() * this.worldWidth);
const y = Math.floor(Math.random() * this.worldHeight);
const biome = this.biomeSystem.getBiomeAt(x, y);
if (biome === biomeName) {
// Check not too close to other lakes
const tooClose = this.lakes.some(lake => {
const dist = Math.sqrt((lake.x - x) ** 2 + (lake.y - y) ** 2);
return dist < 50;
});
if (!tooClose) {
return { x, y };
}
}
}
return null;
}
/**
* Get lake size for biome
*/
getLakeSizeForBiome(biomeName) {
switch (biomeName) {
case 'grassland':
return 8 + Math.floor(Math.random() * 7); // 8-15 tiles
case 'forest':
return 10 + Math.floor(Math.random() * 8); // 10-18 tiles
case 'mountain':
return 6 + Math.floor(Math.random() * 5); // 6-11 tiles
case 'swamp':
return 12 + Math.floor(Math.random() * 10); // 12-22 tiles
default:
return 8;
}
}
/**
* Generate organic lake shape
*/
generateLakeShape(lake) {
const centerX = lake.x;
const centerY = lake.y;
const radius = lake.size;
// Use cellular automata-like approach for organic shape
for (let dy = -radius; dy <= radius; dy++) {
for (let dx = -radius; dx <= radius; dx++) {
const x = centerX + dx;
const y = centerY + dy;
if (x < 0 || x >= this.worldWidth || y < 0 || y >= this.worldHeight) {
continue;
}
// Distance from center
const dist = Math.sqrt(dx * dx + dy * dy);
// Add noise for organic shape
const noise = (Math.random() - 0.5) * 2;
const threshold = radius + noise;
if (dist < threshold) {
// Calculate depth (1.0 at center, 0.0 at edge)
const depth = 1.0 - (dist / radius);
const key = `${x},${y}`;
this.lakeMap.set(key, {
depth: Math.max(0, Math.min(1, depth)),
lakeId: this.lakes.length,
biome: lake.biome
});
lake.tiles.push({ x, y, depth });
}
}
}
}
/**
* Generate small pond
*/
generatePond() {
// Ponds only in grassland
const location = this.findLakeLocation('grassland');
if (!location) return null;
const pond = {
x: location.x,
y: location.y,
biome: 'grassland',
size: 3 + Math.floor(Math.random() * 3), // 3-6 tiles
type: 'pond',
tiles: []
};
this.generateLakeShape(pond);
return pond;
}
/**
* Generate desert oases
*/
generateOases(count) {
for (let i = 0; i < count; i++) {
const location = this.findLakeLocation('desert');
if (!location) continue;
const oasis = {
x: location.x,
y: location.y,
biome: 'desert',
size: 4 + Math.floor(Math.random() * 3), // 4-7 tiles
type: 'oasis',
tiles: []
};
this.generateLakeShape(oasis);
this.lakes.push(oasis);
}
}
/**
* Check if tile is lake
*/
isLake(x, y) {
const key = `${x},${y}`;
return this.lakeMap.has(key);
}
/**
* Get lake data at tile
*/
getLakeData(x, y) {
const key = `${x},${y}`;
return this.lakeMap.get(key) || null;
}
/**
* Get lake color based on depth and biome
*/
getLakeColor(x, y) {
const data = this.getLakeData(x, y);
if (!data) return 0x4682B4;
const biome = data.biome;
const depth = data.depth;
// Base colors
let baseColor;
switch (biome) {
case 'forest':
baseColor = { r: 42, g: 95, b: 79 }; // Dark green
break;
case 'swamp':
baseColor = { r: 61, g: 90, b: 61 }; // Murky
break;
case 'desert':
baseColor = { r: 135, g: 206, b: 235 }; // Oasis blue
break;
case 'mountain':
baseColor = { r: 70, g: 130, b: 180 }; // Mountain blue
break;
default:
baseColor = { r: 30, g: 144, b: 255 }; // Default blue
}
// Darken based on depth
const r = Math.floor(baseColor.r * depth);
const g = Math.floor(baseColor.g * depth);
const b = Math.floor(baseColor.b * depth);
return (r << 16) | (g << 8) | b;
}
/**
* Get statistics
*/
getStats() {
const typeCount = {
lake: 0,
pond: 0,
oasis: 0
};
for (const lake of this.lakes) {
typeCount[lake.type]++;
}
return {
totalLakes: this.lakes.length,
lakes: typeCount.lake,
ponds: typeCount.pond,
oases: typeCount.oasis,
totalWaterTiles: this.lakeMap.size
};
}
/**
* Export lake data
*/
exportData() {
return {
lakes: this.lakes,
lakeMap: Array.from(this.lakeMap.entries())
};
}
/**
* Import lake data
*/
importData(data) {
this.lakes = data.lakes || [];
this.lakeMap = new Map(data.lakeMap || []);
}
}