Files
novafarma/EMERGENCY_SYSTEMS_RECOVERY/RiverSystem.js
2026-01-16 02:43:46 +01:00

268 lines
7.9 KiB
JavaScript

/**
* 🌊 RIVER SYSTEM
* Generates and manages rivers across the 500x500 world
* - Creates flowing rivers from mountains to lakes
* - Handles river width, curves, and junctions
* - Biome-aware water coloring
*/
class RiverSystem {
constructor(worldWidth, worldHeight, biomeSystem) {
this.worldWidth = worldWidth;
this.worldHeight = worldHeight;
this.biomeSystem = biomeSystem;
// River map (stores river type: 'river', 'tributary', 'spring')
this.riverMap = new Map();
// River paths (array of segments)
this.rivers = [];
// River settings
this.riverCount = 3; // Number of major rivers
this.minRiverLength = 50; // Minimum river length
this.maxRiverLength = 200; // Maximum river length
this.riverWidth = 2; // Base width (tiles)
this.tributaryChance = 0.15; // Chance to spawn tributary
console.log(`🌊 Initializing River System (${worldWidth}x${worldHeight})`);
}
/**
* Generate all rivers
*/
generateRivers() {
console.log(`🌊 Generating ${this.riverCount} rivers...`);
// 1. Find river sources (springs in mountains)
const sources = this.findRiverSources();
// 2. Generate river paths from each source
for (let i = 0; i < sources.length; i++) {
const source = sources[i];
const river = this.generateRiverPath(source, i);
if (river && river.length > this.minRiverLength) {
this.rivers.push(river);
this.markRiverTiles(river);
}
}
console.log(`✅ Generated ${this.rivers.length} rivers with ${this.riverMap.size} water tiles`);
}
/**
* Find river sources (prefer mountains)
*/
findRiverSources() {
const sources = [];
const attempts = this.riverCount * 3;
for (let i = 0; i < attempts && sources.length < this.riverCount; i++) {
const x = Math.floor(Math.random() * this.worldWidth);
const y = Math.floor(Math.random() * this.worldHeight);
const biome = this.biomeSystem.getBiomeAt(x, y);
// Prefer mountain sources, but allow forest
if (biome === 'mountain' || (biome === 'forest' && Math.random() < 0.3)) {
// Check not too close to other sources
const tooClose = sources.some(s =>
Math.abs(s.x - x) < 100 && Math.abs(s.y - y) < 100
);
if (!tooClose) {
sources.push({ x, y, biome });
}
}
}
// If not enough, add random sources
while (sources.length < this.riverCount) {
sources.push({
x: Math.floor(Math.random() * this.worldWidth),
y: Math.floor(Math.random() * this.worldHeight),
biome: 'forest'
});
}
console.log(`🏔️ Found ${sources.length} river sources:`, sources);
return sources;
}
/**
* Generate a single river path from source
*/
generateRiverPath(source, riverIndex) {
const path = [];
let x = source.x;
let y = source.y;
// Random target direction (generally downward/outward)
const targetAngle = Math.random() * Math.PI * 2;
// River length
const length = this.minRiverLength + Math.floor(Math.random() * (this.maxRiverLength - this.minRiverLength));
// Generate path using noise
for (let step = 0; step < length; step++) {
// Add current position to path
path.push({ x: Math.floor(x), y: Math.floor(y) });
// Check bounds
if (x < 0 || x >= this.worldWidth || y < 0 || y >= this.worldHeight) {
break;
}
// Check if reached lake
const biome = this.biomeSystem.getBiomeAt(Math.floor(x), Math.floor(y));
if (biome === 'swamp' && Math.random() < 0.3) {
// River ends in swamp lake
break;
}
// Move river forward
// Add some randomness to create curves
const noise = (Math.random() - 0.5) * 0.5;
const angle = targetAngle + noise;
const dx = Math.cos(angle);
const dy = Math.sin(angle);
x += dx;
y += dy;
// Occasionally create tributary
if (Math.random() < this.tributaryChance && path.length > 10) {
this.createTributary(x, y, 10);
}
}
return path;
}
/**
* Create a small tributary
*/
createTributary(startX, startY, length) {
const path = [];
let x = startX;
let y = startY;
const angle = Math.random() * Math.PI * 2;
for (let i = 0; i < length; i++) {
path.push({ x: Math.floor(x), y: Math.floor(y) });
const noise = (Math.random() - 0.5) * 0.8;
x += Math.cos(angle + noise);
y += Math.sin(angle + noise);
if (x < 0 || x >= this.worldWidth || y < 0 || y >= this.worldHeight) {
break;
}
}
this.markRiverTiles(path, 'tributary');
}
/**
* Mark river tiles on the river map
*/
markRiverTiles(path, type = 'river') {
for (const point of path) {
const key = `${point.x},${point.y}`;
// Main river tile
this.riverMap.set(key, { type, width: this.riverWidth });
// Add width (make river wider)
const width = type === 'tributary' ? 1 : this.riverWidth;
for (let dy = -width; dy <= width; dy++) {
for (let dx = -width; dx <= width; dx++) {
if (dx === 0 && dy === 0) continue;
// Check if within circle
const dist = Math.sqrt(dx * dx + dy * dy);
if (dist <= width) {
const nx = point.x + dx;
const ny = point.y + dy;
if (nx >= 0 && nx < this.worldWidth && ny >= 0 && ny < this.worldHeight) {
const nkey = `${nx},${ny}`;
if (!this.riverMap.has(nkey)) {
this.riverMap.set(nkey, { type: 'riverbank', width });
}
}
}
}
}
}
}
/**
* Check if tile is river
*/
isRiver(x, y) {
const key = `${x},${y}`;
return this.riverMap.has(key);
}
/**
* Get river data at tile
*/
getRiverData(x, y) {
const key = `${x},${y}`;
return this.riverMap.get(key) || null;
}
/**
* Get river color based on biome
*/
getRiverColor(x, y) {
const biome = this.biomeSystem.getBiomeAt(x, y);
switch (biome) {
case 'forest':
return 0x2a5f4f; // Dark green water
case 'swamp':
return 0x3d5a3d; // Murky swamp water
case 'desert':
return 0x87CEEB; // Clear oasis water
case 'mountain':
return 0x4682B4; // Cool mountain water
default:
return 0x1E90FF; // Default blue water
}
}
/**
* Get statistics
*/
getStats() {
return {
riverCount: this.rivers.length,
totalWaterTiles: this.riverMap.size,
avgRiverLength: this.rivers.reduce((sum, r) => sum + r.length, 0) / this.rivers.length || 0
};
}
/**
* Export river data for saving
*/
exportData() {
return {
rivers: this.rivers,
riverMap: Array.from(this.riverMap.entries())
};
}
/**
* Import river data from save
*/
importData(data) {
this.rivers = data.rivers || [];
this.riverMap = new Map(data.riverMap || []);
}
}