Files
novafarma/scripts/process_hay.py

72 lines
2.0 KiB
Python

import cv2
import numpy as np
import os
def process_hay():
# Paths
input_path = 'assets/references/proizvodnja_sena.png'
output_dir = 'assets/DEMO_FAZA1/Items/Hay'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Load image
img = cv2.imread(input_path)
if img is None:
print(f"Error: Could not load {input_path}")
return
# Convert to RGBA
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
# Define Green Key (assuming bright green background)
# Range for Chroma Key Green in HSV is best, but BGR is fine for simple flat green
# Pure Green in BGR is (0, 255, 0)
# Using HSV for better masking
hsv = cv2.cvtColor(img[:,:,:3], cv2.COLOR_BGR2HSV)
# Mask for Green (Hue 35-85 approx for standard green screen)
lower_green = np.array([35, 50, 50])
upper_green = np.array([85, 255, 255])
mask = cv2.inRange(hsv, lower_green, upper_green)
# Invert mask (we want non-green parts)
mask_inv = cv2.bitwise_not(mask)
# Set Alpha channel based on mask
# Everything green becomes transparent
img[:, :, 3] = mask_inv
# Find contours of objects
# Use the mask_inv (where 255 is the object)
contours, _ = cv2.findContours(mask_inv, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
print(f"Found {len(contours)} objects.")
count = 0
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
# Filter noise
if w < 10 or h < 10:
continue
# Crop
crop = img[y:y+h, x:x+w]
# Determine if it's a small pile or big bale based on size
# This is a heuristic. We'll label them by size.
area = w * h
label = "hay_piece"
# Save
output_filename = f"{output_dir}/hay_drop_{count}.png"
cv2.imwrite(output_filename, crop)
print(f"Saved {output_filename} (Size: {w}x{h})")
count += 1
if __name__ == "__main__":
process_hay()