Update GrassScene: S1 Max Logic, Infinite Grass mode, new assets (visoka_trava_v2), physics enabled. Time: 15:15

This commit is contained in:
2026-01-26 15:15:38 +01:00
parent d8f24f9588
commit 3b0c26fa5a
11 changed files with 367 additions and 102 deletions

View File

@@ -0,0 +1,59 @@
import cv2
import numpy as np
import os
def remove_pink_bg():
input_path = '/Users/davidkotnik/.gemini/antigravity/brain/63340bd3-91a9-439d-b1d9-5692ce5adaea/visoka_trava_v2_pink_bg_1769436757738.png'
output_path = 'assets/DEMO_FAZA1/Vegetation/visoka_trava_v2.png'
# Ensure directory exists
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# Read image
img = cv2.imread(input_path)
if img is None:
print(f"Error: Could not read {input_path}")
return
# Convert to RGBA
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
# Define Magenta range (B, G, R) - standard magenta is (255, 0, 255) in BGR
# We'll allow a small tolerance to catch anti-aliasing edges
sensitivity = 20
lower_magenta = np.array([255 - sensitivity, 0, 255 - sensitivity])
upper_magenta = np.array([255, sensitivity, 255])
# Create mask
# Note: OpenCV reads as BGR, so Pink #FF00FF is (255, 0, 255)
# Using simple color thresholding
mask = cv2.inRange(img[:,:,:3], lower_magenta, upper_magenta)
# Invert mask (we want to keep non-magenta)
mask_inv = cv2.bitwise_not(mask)
# Apply mask to alpha channel
# Where mask is white (magenta pixels), alpha becomes 0
# But mask_inv is white for KEEP pixels.
# So we want Alpha to be 0 where mask is 255.
# Better approach:
# 1. Split channels
b, g, r, a = cv2.split(img)
# 2. Update alpha channel using the inverted mask
# If mask pixel is 255 (magenta), mask_inv is 0. We want alpha 0 there.
# If mask pixel is 0 (not magenta), mask_inv is 255. We want alpha 255 there.
# However, original alpha is 255 everywhere inside the image bounds.
# So we can just take bitwise_and or just set alpha to mask_inv.
img[:, :, 3] = mask_inv
# Optional: Basic edge smoothing/despiking if needed, but for pixel/vector art simple cut is often better.
# Save
cv2.imwrite(output_path, img)
print(f"Successfully saved transparent image to {output_path}")
if __name__ == "__main__":
remove_pink_bg()

71
scripts/process_hay.py Normal file
View File

@@ -0,0 +1,71 @@
import cv2
import numpy as np
import os
def process_hay():
# Paths
input_path = 'assets/references/proizvodnja_sena.png'
output_dir = 'assets/DEMO_FAZA1/Items/Hay'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Load image
img = cv2.imread(input_path)
if img is None:
print(f"Error: Could not load {input_path}")
return
# Convert to RGBA
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
# Define Green Key (assuming bright green background)
# Range for Chroma Key Green in HSV is best, but BGR is fine for simple flat green
# Pure Green in BGR is (0, 255, 0)
# Using HSV for better masking
hsv = cv2.cvtColor(img[:,:,:3], cv2.COLOR_BGR2HSV)
# Mask for Green (Hue 35-85 approx for standard green screen)
lower_green = np.array([35, 50, 50])
upper_green = np.array([85, 255, 255])
mask = cv2.inRange(hsv, lower_green, upper_green)
# Invert mask (we want non-green parts)
mask_inv = cv2.bitwise_not(mask)
# Set Alpha channel based on mask
# Everything green becomes transparent
img[:, :, 3] = mask_inv
# Find contours of objects
# Use the mask_inv (where 255 is the object)
contours, _ = cv2.findContours(mask_inv, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
print(f"Found {len(contours)} objects.")
count = 0
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
# Filter noise
if w < 10 or h < 10:
continue
# Crop
crop = img[y:y+h, x:x+w]
# Determine if it's a small pile or big bale based on size
# This is a heuristic. We'll label them by size.
area = w * h
label = "hay_piece"
# Save
output_filename = f"{output_dir}/hay_drop_{count}.png"
cv2.imwrite(output_filename, crop)
print(f"Saved {output_filename} (Size: {w}x{h})")
count += 1
if __name__ == "__main__":
process_hay()